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A strategy-based proof of the existence of
the value in zero-sum differential games ∗

J. Pablo Maldonado López M. Oliu-Barton

Abstract
The value of a zero-sum differential games is known to exist, un-
der Isaacs’ condition, and it is the unique viscosity solution of a
Hamilton-Jacobi-Isaacs equation. This approach, in spite of being
very effective, does not provide information about the strategies
the players should use. In this note we provide a self-contained
proof of the existence of the value based on the construction of
ε-optimal strategies, which is inspired by the “extremal aiming”
method from [5].
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1 Comparison of trajectories

Let U and V be compact subsets of some euclidean space, let ‖ · ‖ be
the euclidean norm in Rn, and let f : [0, 1] × Rn × U × V → Rn. For
each x ∈ Rn and Z ⊂ Rn, let D(x,Z) := infz∈Z ‖x − z‖ be the usual
distance from x to the set Z.
Assumption 1.1. f is uniformly bounded, continuous and there exists
c ≥ 0 such that for all (u, v) ∈ U × V , (s, t) ∈ [0, 1]2 and x, y ∈ Rn:

‖f(t, x, u, v)− f(s, y, u, v)‖ ≤ c
(
|t− s|+ ‖x− y‖

)
.

Let ‖f‖ := sup(t,x,u,v) ‖f(t, x, u, v)‖ < +∞.
∗This work was partially supported by the Commission of the European Commu-

nities under the 7th Framework Programme Marie Curie Initial Training Network
(FP7-PEOPLE-2010-ITN), project SADCO, contract number 264735.
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The local game. For any (t, x, ξ) ∈ [0, 1] × Rn × Rn the local game
Γ(t, x, ξ) is a one-shot game with action sets U and V and payoff func-
tion:

(u, v) 7→ 〈ξ, f(t, x, u, v)〉.

Let H−(t, x, ξ) and H+(t, x, ξ) be its maxmin and minmax respectively:

H−(t, x, ξ) := max
u∈U

min
v∈V
〈ξ, f(t, x, u, v)〉,

H+(t, x, ξ) := min
v∈V

max
u∈U
〈ξ, f(t, x, u, v)〉.

These functions satisfy H− ≤ H+. If the equality

H+(t, x, ξ) = H−(t, x, ξ)

holds, the game Γ(t, x, ξ) has a value, and it is denoted by H(t, x, ξ).

Assumption 1.2. The local game Γ(t, x, ξ) has a value for all (t, x, ξ)
in [0, 1]× Rn × Rn.

Assumptions 1.1 and 1.2 hold in the rest of the paper.

1.1 A key Lemma

Introduce the sets of controls:

U = {u : [0, 1]→ U, measurable}, V = {v : [0, 1]→ V, measurable}.

Consider the following dynamical system where t0 ∈ [0, 1], z0 ∈ Rn and
(u,v) ∈ U × V:

(1) z(t0) = z0, ż(t) = f(t, z(t),u(t),v(t)) a.e. on [t0, 1].

Assumption 1.1 ensures the existence of a unique solution to (1), denoted
by z[t0, z0,u,v], in the extended sense: for any t ∈ [t0, 1],

z[t0, z0,u,v](t) := z0 +

∫ t

t0

f(s, z(s),u(s),v(s))ds.

This result is due to Carathéodory and can be found in [3, Chapter 2].
Elements of U and V are identified with constant controls.

The purpose of this section is to bound the distance between two
trajectories: one starting from x0 and controlled by (u, v), and another
one starting from w0 and controlled by (u,v). The appropriate pair
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w0

x0 v∗ is optimal for player 2

u∗ is optimal for player 1

Local Game: Γ(t0, x0, ξ0)

u, v∗ x(t)

u∗,v

w(t)
ξ0

Figure 1: Construction of two trajectories using the local game.

(u, v) is obtained using the existence of the value and of optimal actions
in the local game: let u∗ (resp. v∗) be optimal for player 1 (resp. 2)
in Γ(t0, x0, ξ0), where ξ0 := x0 − w0. Let x := x[t0, x0,u, v

∗] and w :=
w[t0, w0, u

∗,v] (see Figure 1). The following lemma is inspired by [5,
Lemma 2.3.1].

Lemma 1.3. There exist A,B ∈ R+ such that for all t ∈ [t0, 1]:

‖x(t)−w(t)‖2 ≤ (1 + (t− t0)A)‖x0 − w0‖2 +B(t− t0)2.

Proof. Let d0 := ‖x0 − w0‖ and d(t) := ‖x(t)−w(t)‖. Then:

(2) d2(t) =

∥∥∥∥ξ0 +

∫ t

t0

[f(s,x(s),u(s), v∗)− f(s,w(s), u∗,v(s))]ds

∥∥∥∥2 .
The boundedness of f implies that:

(3)
∥∥∥∥∫ t

t0

[f(s,x(s),u(s), v∗)− f(s,w(s), u∗,v(s))]ds

∥∥∥∥2 ≤
≤ 4‖f‖2(t− t0)2.

Claim 1.4. For all s ∈ [t0, 1], and for all (u, v) ∈ U × V :

(4) 〈ξ0, f(s,x(s), u, v∗)− f(s,w(s), u∗, v)〉 ≤ 2C(s)d0 + cd20,

where C(s) := c(1 + ‖f‖)(s− t0).

Proof. Assumption 1.1 implies ‖x(s)− x0‖ ≤ (s− t0)‖f‖, and then:

‖f(s,x(s), u, v∗)− f(t0, x0, u, v
∗)‖ ≤ c

(
(s− t0) + ‖f‖(s− t0)

)
= C(s).
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From the Cauchy-Schwartz inequality and the optimality of v∗ one gets:

〈ξ0, f(s,x(s), u, v∗)〉 ≤ 〈ξ0, f(t0, x0, u, v
∗)〉+ C(s)d0,(5)

≤ H+(t0, x0, ξ0) + C(s)d0.(6)

Similarly, Assumption 1.1 implies ‖w(s)− x0‖ ≤ d0 + (s− t0)‖f‖, and
then:

‖f(s,w(s), u∗, v)− f(t0, x0, u
∗, v)‖ ≤ C(s) + cd0.

Using the Cauchy-Schwartz inequality and the optimality of u∗:

〈ξ0, f(s,w(s), u∗, v)〉 ≥ 〈ξ0, f(t0, x0, u
∗, v)〉 − (C(s) + cd0)d0,(7)

≥ H−(t0, x0, ξ0)− C(s)d0 − cd20.(8)

The claim follows by substracting the inequalities (6) and (8) and using
Assumption 1.2 to cancel (H+ −H−)(t0, x0, ξ0). �

In particular, (4) holds for (u, v) = (u(s),v(s)). Note that∫ t

t0

2C(s)ds ≤ (t− t0)C(t).

Thus, integrating (4) over [t0, t] yields:∫ t

t0

〈ξ0, f(s,x(s),u(s), v∗)− f(s,w(s), u∗,v(s))〉ds

≤ (t− t0)(C(t)d0 + cd20).

Using the estimates (3) and (9) in (2) we obtain:

d2(t) ≤ d20 + 4‖f‖2(t− t0)2 + 2(t− t0)C(t)d0 + 2c(t− t0)d20.

Finally, using the relations d0 ≤ 1+d20 and (t− t0)C(t) = c(1+‖f‖)(t−
t0)

2, the result follows with A := 3c+2‖f‖ and B := 4‖f‖2+2c(1+‖f‖).
�

1.2 Consequences

We give here three direct consequences of Lemma 1.3. In Section 1.2.1
we use a set of times Π = {t0 < t1 < · · · < tN} in [0, 1] to construct two
trajectories on [t0, tN ] inductively. Applying Lemma 1.3 to the intervals
[tm, tm+1] for m = 0, 1 . . . , N − 1, we obtain a bound for the distance
between the two at time tN . In particular, if the two trajectories start
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x0 x(t1) x(t2)u, v∗0 u, v∗1

w0 w(t1) w(t2)u∗0,v u∗1,v

. . .

. . .

(u∗0, v
∗
0) optimal in

Γ(t0, x0, ξ0)

(u∗1, v
∗
1) optimal in

Γ(t1,x(t1), ξ1)

ξ0 ξ1 ξ2

Figure 2: Iterative construction of the two trajectories.

from the same state then their distance at time tN vanishes as ‖Π‖ :=
max1≤m≤N tm−tm−1 tends to 0. In Section 1.2.2, we replace the distance
between two trajectories by the distance between a trajectory and a set.
Finally, we combine the two aspects in Section 1.2.3; the result obtained
therein is used in Section 2 to prove the existence of the value of zero-sum
differential games with terminal payoff.

1.2.1 Induction

Let (u,v) ∈ U × V be a pair of controls. Define the trajectories x and
w on [t0, tN ] inductively: let x(t0) = x0 and w(t0) = w0 and suppose
that x(t) and w(t) are defined on [t0, tm] for some m = 0, . . . , N − 1.
Consider the local game Γ(tm,x(tm), ξm), where ξm := x(tm) −w(tm),
and let u∗m ∈ U and v∗m ∈ V be optimal actions for player 1 and 2
respectively. For t ∈ [tm, tm+1], set x(t) := x[tm,x(tm),u, v∗m](t) and
w(t) := w[tm,w(tm), u∗m,v](t) (see Figure 2).

Corollary 1.5. ‖x(tN )−w(tN )‖2 ≤ eA(‖x0 − w0‖2 +B‖Π‖).

Proof. For any 0 ≤ m ≤ N , put dm := ‖x(tm) − w(tm)‖. By Lemma
1.3, one has:

d2m ≤ (1 + (tm − tm−1)A)d2m−1 +B(tm − tm−1)2.

By induction, one obtains:

d2N ≤ exp

(
A

N∑
m=1

(tm − tm−1)

)(
d20 +B

N∑
m=1

(tm − tm−1)2
)
.
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The result follows, since
∑N

m=1(tm−tm−1) ≤ 1 and
∑N

m=1(tm−tm−1)2 ≤
‖Π‖. �

1.2.2 Distance to a set

Let W ⊂ [t0, 1]× Rn be a set satisfying the following properties:

• P1: For any t ∈ [t0, 1], W(t) := {x ∈ Rn | (t, x) ∈ W} is closed and
nonempty.

• P2: For any (t, x) ∈ W and any t′ ∈ [t, 1]:

sup
u∈U

inf
v∈V

D(x[t, x, u,v](t′),W(t′)) = 0.

Equivalent formulations of P2 were introduced by Aubin [1], al-
though our formulation is inspired by the notion of stable bridge in [5].

Let x0 ∈ Rn, and let w0 ∈ argminW(t0)‖x0−w0‖ be a point which is
the closest to x0 in W(t0) and let v∗ be optimal for player 2 in the local
game Γ(t0, x0, x0 − w0).

Corollary 1.6. For every t ∈ [t0, 1] and u ∈ U :

D2(x[t0, x0,u, v
∗](t),W(t)) ≤ (1 + (t− t0)A)D2(x0,W(t0)) +B(t− t0)2.

Proof. Let u ∈ U be fixed and let u∗ be optimal in Γ(t0, x0, x0 − w0).
By P2, for every ε > 0 there exists v(ε,u∗) ∈ V such that the point
wε(t) := x[t0, w0, u

∗,v(ε,u∗)](t) satisfies D(wε(t),W(t)) ≤ ε (see Figure
3). We use the following abbreviation: xu(t) := x[t0, x0,u, v

∗](t). The
triangular inequality gives D(xu(t),W(t)) ≤ ‖xu(t)−wε(t)‖+ε. Taking
the limit, as ε→ 0, one has that:

D2(xu(t),W(t)) ≤ lim
ε→0
‖xu(t)−wε(t)‖2.

By Lemma 1.3, ‖xu(t)−wε(t)‖2 ≤ (1+(t− t0)A)‖x0−w0‖2+B(t− t0)2
for all ε > 0. The result follows by the choice of w0. �

1.2.3 A key Corollary

For any u ∈ U , define a trajectory xu on [t0, tN ] inductively: let xu(t0) =
x0 and suppose that xu is defined on [t0, tm] for some m = 0, . . . , N − 1.
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Let wm ∈ argminw∈W(tm)‖xu(tm)−w‖ be a point which is the closest to
xu(tm) in W(tm), and let v∗m be optimal for player 2 in the local game

Γ(tm,xu(tm),xu(tm)− wm).

Implicitly, we are using two selection rules π1 and π2 defined as
follows: π1 : [0, 1]× Rn → Rn assigns to each (t, x) a point which is the
closest to x in W(t); π2 : [0, 1] × Rn × Rn → V assigns to each (t, x, ξ)
an optimal action for player 2 in the local game Γ(t, x, ξ). Thus,

v∗m = π2
(
tm,xu(tm),xu(tm)− π1(xu(tm))

)
.

For t ∈ [tm, tm+1], put xu(t) := x[tm,xu(tm),u, v∗m](t). Define a control
β(u) ∈ V inductively by setting β(u) ≡ v∗m on [tm, tm+1] for all 0 ≤ m <
N , so that xu(t) = x[t0, x0,u, β(u)](t), for all t ∈ [t0, tN ].

Note that the action v∗m used in the interval [tm, tm+1] depends only
on the current position xu(tm) and on the set W(tm). Moreover, the
current position depends only on v∗0, . . . , v∗m−1 and on the restriction of
u to the interval [t0, tm]. In particular, the control β(u) is piecewise
constant and depends on the set of times Π. Finally, note that for
u1,u2 ∈ U such that u1 ≡ u2 on [t0, tm] for some 0 ≤ m < N , the
construction described above gives β(u1) ≡ β(u2) on [t0, tm+1]. In this
sense, β : U → V is nonanticipative with delay with respect to the set
of times Π.

Putting Corollaries 1.5 and 1.6 together and choosing x0 ∈ W(t0)
yields a useful bound.

Corollary 1.7. For any u ∈ U , D2(x[t0, x0,u, β(u)](tN ),W(tN )) ≤
eAB‖Π‖.

This result can be interpreted as follows: under P1-P2 for any con-
trol u ∈ U there exists a “reply” β(u) ∈ V (which is nonanticipative with
delay, and piecewise constant along Π) which keeps a trajectory starting
from W(t0) at time t0 arbitrarily close to W(tN ) at time tN .

2 Differential Games

Consider now the zero-sum differential game G(t0, x0) played in [t0, 1]
and with the following dynamics in Rn:

x(t0) = x0, ẋ(t) = f(t,x(t),u(t),v(t)) (a.e. on [t0, 1]).
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x0
xu(t)u, v∗

W(t0) W(t)

w0

wε(t)

u∗,v(ε,u∗)
ε

Figure 3: Distance to a set W ⊂ [t0, 1]× Rn satisfying P1 and P2.

Definition 2.1. A strategy for player 2 is a map β : U → V such that,
for some finite partition s0 < s1 < · · · < sN of [t0, 1], for all u1,u2 ∈ U
and 0 ≤ m < N :

u1 ≡ u2 a.e. on [s0, sm] =⇒ β(u1) ≡ β(u2) a.e. on [s0, sm+1].

These strategies are called nonanticipative strategies with delay (NAD)
[2, Section 2.2] in contrast to the classical nonanticipative strategies.
The strategies for player 1 are defined in a dual manner. Let A (resp.
B) the set of strategies for player 1 (resp. 2). For any pair of strategies
(α, β) ∈ A × B, there exists a unique pair (ū, v̄) ∈ U × V such that
α(v̄) = ū and β(ū) = v̄ [2, Lemma 1]. This fact is crucial for it allows
to define x[t0, x0, α, β] := x[t0, x0, ū, v̄] in a unique manner.

The payoff function has two parts: a running payoff γ : Rn × U ×
V → R and a terminal payoff g : Rn → R. However, the classical
transformation of a Bolza problem into a Mayer problem, which gets rid
of the running payoff, can also be applied here: enlarge the state space
from Rn to Rn+1, where the last coordinate represents the accumulated
payoff; define an auxiliary terminal payoff function g̃ : Rn+1 → R as
g̃(x, y) = g(x) + y; we thus obtain an equivalent differential game with
no running payoff and dynamic f̃ = (f, γ). Consequently, we can assume
without loss of generality that γ ≡ 0.

Assumption 2.2. g is Lipschitz continuous.

Assumption 2.2 holds in the rest of the paper. Introduce the lower
and upper value functions:

V−(t0, x0) := sup
α∈A

inf
β∈B

g
(
x[t0, x0, α, β](1)

)
,

V+(t0, x0) := inf
β∈B

sup
α∈A

g
(
x[t0, x0, α, β](1)

)
.
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The inequality V− ≤ V+ holds everywhere. If V−(t0, x0) = V+(t0, x0),
the game G(t0, x0) has a value, denoted by V(t0, x0). Under Assump-
tion 1.2, usually known as Isaacs’ condition, the value exists as the
unique viscosity solution of some Hamilton-Jacobi-Isaacs equation with
a boundary condition [4]. The functional approach is very effective for it
yields the existence and a characterization of the value function. How-
ever, it does not tell us much about the strategies the players should
use. In this note we focus on the strategies, as in [5], and prove the exis-
tence of the value using an explicit construction of ε-optimal strategies.
Let us end this section by stating the dynamic programming principle
[2, Proposition 2] satisfied by V−: for all (t, x) ∈ [0, 1] × Rn and all
t′ ∈ [t, 1],

(9) V−(t, x) = sup
α∈A

inf
β∈B

V−
(
t′,x[t, x, α, β](t′)

)
.

The dynamic programming principle consists in two inequalities: the ≥
(resp. ≤) inequality is the superdynamic (resp. subdynamic) program-
ming principle.

2.1 Existence of the value

Let φ : [t0, 1] × Rn → R be a real function satisfying the following
properties:

(i) φ is lower semicontinuous.

(ii) For each (t, x) ∈ [t0, 1]× Rn and t′ ∈ [t, 1]:

φ(t, x) ≥ sup
u∈U

inf
v∈V

φ
(
t′,x[t, x, u,v](t′)

)
;

(iii) φ(1, x) ≥ g(x) for all x ∈ Rn.

Definition 2.3. For any ` ∈ R, define the `-level set of φ by:

Wφ
` = {(t, x) ∈ [t0, 1]× Rn | φ(t, x) ≤ `},

and let

Wφ
` (t) = {x ∈ Rn | φ(t, x) ≤ `}.

Lemma 2.4. For each ` ≥ φ(t0, x0), the `-level set of φ satisfies P1
and P2.
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Proof. x0 ∈ Wφ
` (t0) so that Wφ

` (t0) is nonempty. By (i), Wφ
` (t) is

a closed set for all t ∈ [0, 1]. The property (ii) implies that for any
t ∈ [t0, 1], u ∈ U and n ∈ N∗ there exists vn ∈ V such that:

(10) ` ≥ φ(t0, x0) ≥ φ
(
t,x[t0, x0, u,vn](t)

)
− 1

n
.

The boundedness of f implies that xn := x[t0, x0, u,vn](t) belongs to
some compact set. Consider a subsequence (xn)n such that

lim
n→∞

φ(t, xn) = lim inf
n→∞

φ(t, xn),

and such that (xn)n converges to x̄ ∈ Rn. Take the limit, as n→∞, in
(10). Then by (i) one has:

` ≥ φ(t0, x0) ≥ φ
(
t, x̄).

Consequently, x̄ ∈ Wφ
` (t) 6= ∅ and infn∈N∗ d

(
x[t0, x0, u,vn](t),Wφ

`

(
t)) =

0. The proof of these two properties still holds by replacing (t0, x0) and
t ∈ [t0, 1] by any (t, x) ∈ Wφ

` and t′ ∈ [t, 1], so that Wφ
` satisfies P1 and

P2. �

2.1.1 Extremal strategies in G(t0, x0)

Let Wφ ⊂ [t0, 1]× Rn be the φ(t0, x0)-level set of φ, i.e.:

Wφ := {(t, x) ∈ [t0, 1]× Rn | φ(t, x) ≤ φ(t0, x0)}.

As in Section 1.2.3, let π1 and π2 be two selection rules defined as
follows: π1 : [0, 1]× Rn → Rn assigns to each (t, x) a point which is the
closest to x in Wφ(t); π2 : [0, 1]×Rn ×Rn → V assigns to each (t, x, ξ)
an optimal action for player 2 in the local game Γ(t, x, ξ). Finally, let:

π : [0, 1]× Rn → V, (t, x) 7→ π2(t, x, x− π1(t, x)).

Definition 2.5. Anextremal strategy β = β(φ,Π, π) : U → V is defined
inductively as follows: suppose that β is already defined on [t0, tm] for
some 0 ≤ m < N , and let xm := x[t0, x0,u, β(u)](tm). Then set β(u) ≡
π(tm, xm) on [tm, tm+1].

These strategies are inspired by the extremal aiming method used
by Krasovskĭı and Subbotin in [5, Section 2.4].
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Proposition 2.1. For some C ∈ R+, and for any extremal strategy
β = β(φ,Π, π):

g(x[t0, x0,u, β(u)](1)) ≤ φ(t0, x0) + C
√
‖Π‖, ∀u ∈ U .

Proof. Without loss of generality, tN = 1 so that

xN = x[t0, x0,u, β(u)](1).

By Lemma 2.4, Wφ satisfies P1 and P2. Thus, by Corollary 1.7:

(11) D2(xN ,Wφ(1)) ≤ eAB‖Π‖.

Using (iii) one obtains that:

Wφ(1) = {x ∈ Rn | φ(1, x) ≤ φ(t0, x0)} ⊂ {x ∈ Rn| g(x) ≤ φ(t0, x0)}.

Let wN be a point which is the closest to xN in W(1) and let κ be the
Lipschitz constant of g. Then:

g(xN ) ≤ g(wN ) + κ‖xN − wN‖,
≤ φ(t0, x0) + κd(xN ,Wφ(1)).

The result follows from (11). �

Theorem 2.6. The differential game G(t0, x0) has a value V. Moreover,
the extremal strategy β(V,Π, π) is asymptotically optimal for player 2,
as ‖Π‖ → 0.

Proof. We claim that V− satisfies (i), (ii) and (iii) and refer to the
Appendix for a proof: V−(1, x) = g(x), for all x ∈ Rn, so that (iii)
holds; (ii) can be easily deduced from the superdynamic programming
principle (9) (Claim 3.1) or proved directly (Claim 3.3); Assumption 1.1
and 2.2 imply, using Gronwall’s lemma, that the map x 7→ V−(t, x)
is Lipschitz continuous for all t ∈ [t0, 1], so that (i) holds (Claim 3.2).
Thus, by Proposition 2.1:

V+(t0, x0) ≤ sup
u∈U

g
(
x[t0, x0,u, β(u)](1)

)
≤ V−(t0, x0) + C

√
‖Π‖.

The existence of the value follows by letting ‖Π‖ tend to 0. Fix now the
extremal strategy β = β(V,Π, π) of player 2. Then, to every strategy
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α ∈ A of player 1 corresponds a unique control u ∈ U so that, by
Proposition 2.1:

sup
α∈A

g
(
x[t0, x0, α, β](1)

)
= sup

u∈U
g
(
x[t0, x0,u, β(u)](1)

)
,(12)

≤ V(t0, x0) + C
√
‖Π‖.(13)

Consequently, for any ε > 0, the strategy β(V,Π, π) is ε-optimal for
sufficiently small ‖Π‖. �

3 Appendix

Claim 3.1. The superdynamic programming principle (9) implies that
V− satisfies (ii).

Proof. Identify every u ∈ U with a strategy that plays u on [t0, 1]
regardless of v. Then:

sup
α∈A

inf
β∈B

V−
(
t′,x[t0, x0, α, β](t′)

)
≥ sup

u∈U
inf
β∈B

V−
(
t′,x[t0, x0, u, β(u)](t′)

)
≥ sup

u∈U
inf
v∈V

V−
(
t′,x[t0, x0, u,v](t′)

)
.

The first inequality is clear because U ⊂ A; the second comes from the
fact that β(u) ∈ V for all u ∈ U . �

Claim 3.2. V− satisfies (i).

Proof. Using Assumption 1.1 and Gronwall’s lemma one obtains that,
for all t ∈ [t0, 1], (u,v) ∈ U × V, and x, y ∈ Rn:

‖x[t0, x,u,v](t)− x[t0, y,u,v](t)‖ ≤ ec(t−t0)‖x− y‖.

Let κ be a Lipschitz constant for g. Then, for all (u,v) ∈ U × V, and
for all x, y ∈ Rn:∣∣g(x[t0, x,u,v](1)

)
− g
(
x[t0, y,u,v](1)

)∣∣ ≤ κec‖x− y‖.
Consequently, the map x 7→ V−(t, x) is κec-Lipschitz continuous for all
t ∈ [t0, 1], which is a stronger requirement than (i). �

For the sake of completeness, let us end this note by proving that
V− satisfies (ii) directly. The superdynamic programming principle (9)
can be proved in the same way.
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Claim 3.3. V− satisfies (ii).

Proof. Let (t, x) ∈ [t0, 1] × Rn, let t′ ∈ [t, 1] and let ε > 0 be fixed. An
ε-optimal strategy for player 1 in G(t, x) is a strategy α ∈ A such that:

sup
v∈V

g
(
x[t, x, α(v),v](1)

)
≥ V−(t, x)− ε.

The Lipschitz continuity of z 7→ V−(t′, z) implies the existence of some
δ > 0 such that any ε-optimal strategy in G(t′, x′) remains 2ε-optimal in
G(t′, z) for all z ∈ B(x′, δ) (the euclidean ball of radius δ and center x′).
By compactness, B(x, ‖f‖) can be covered by some finite family (Ei)i∈I
of pairwise disjoint sets such that Ei ⊂ B(xi, δ) for some xi ∈ R (i ∈ I).
Let αi ∈ A (i ∈ I) be an ε-optimal strategy for player 1 in G(t′, xi).
For any u ∈ U and v ∈ V, put xu,v := x[x, t, u,v]. Note that xu,v(t′)
depends only on the restriction of v to [t, t′]. The definition of αi and
Ei (i ∈ I) ensures that, for all v′ ∈ V:

g
(
x[t′,xu,v(t′), αi,v

′](1)
)
1{xu,v(t′)∈Ei}

≥ V−
(
t′,xu,v(t′)

)
1{xu,v(t′)∈Ei} − 2ε.

For each u ∈ U , define a strategy αu ∈ A for player 1 in G(t, x) as
follows. For all v′ ∈ V:

αu(v′)(s) =

{
u if s ∈ [t, t′),

αi(v
′)(s) if s ∈ [t′, 1] and xu,v(t′) ∈ Ei.

First, let us check that αu is a strategy in G(t, x). Indeed, let s1 <
· · · < sN be a common partition of [t′, 1] for the strategies (αi)i – this is
possible because the family is finite. Thus, αu is a strategy with respect
to the set of times t < t′ < s2 < · · · < sN . For any v1,v2 ∈ V, let
v1 ◦t v2 ∈ V be the concatenation of the two controls at time t, i.e.
(v1 ◦t v2)(s) = v1(s) if s ∈ [0, t] and (v1 ◦t v2)(s) = v2(s) if s ∈ [t, 1].
Then, for any v′′ = v ◦t′ v′ ∈ V:

g
(
x[t, x, αu,v

′′](1)
)

=
∑

i∈I
g
(
x[t′,xu,v(t′), αi,v

′](1)
)
1{xu,v(t′)∈Ei},

≥
∑

i∈I
V−
(
t′,xu,v(t′)

)
1{xu,v(t′)∈Ei} − 2ε,

= V−
(
t′,xu,v(t′)

)
− 2ε.
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Taking the infimum in V and the supremum in U yields the desired
result:

V−(t, x) ≥ sup
u∈U

inf
v′′∈V

g
(
x[t, x, αu,v

′′](1)
)
,

≥ sup
u∈U

inf
v∈V

V−
(
t′,xu,v(t′)

)
− 2ε.

Conclude by letting ε tend to 0. �
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