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Cooperads as symmetric sequences

Benjamin Walter

Abstract

We give a brief overview of the basics of cooperad theory using
a new definition which lends itself to easy example creation and
verification and avoids common pitfalls and complications caused
by nonassociativity of the composition operation for cooperads.
We also apply our definition to build the parenthesization and
cosimplicial structures exhibited by cooperads and give examples.
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1 Introduction

In the current work we discuss cooperads in generic symmetric monoidal
categories from the point of view of symmetric sequences. Fix a sym-
metric monoidal category (C, ⊗). Let us roughly recall the standard
framework.

Operads encode algebra structures. The tautological example is the
endomorphism operad of an object end(A) =

∐
nHom(A⊗n, A). Oper-

ads have a natural grading by levels expressing the “arity” of different
“operations” (for example, end(A)(n) = Hom(A⊗n, A)). The symmet-
ric group Σn acts on the n-ary operations of an operad (for end(A)(n)
this action is by permutation of the A⊗n). A graded object with Σn-
actions is called a “symmetric sequence.” Operads are further equipped
with a composition product identifying the result of plugging opera-
tions into each other (for example, end(A) ◦ end(A)→ end(A)). Very
roughly, an operad is “a bunch of objects with a rule for plugging them
into each other”.

Operads encode algebra structures via maps of operads (preserving
symmetric group actions and composition structure). So, for example,
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there is an operad lie of formal Lie bracket expressions modulo Lie re-
lations, along with a composition rule identifying the result of plugging
bracket expressions into each other. A map of operads lie → end(A)
identifies a specific endomorphism of A for each formal Lie bracket ex-
pression, in such a way that composition of Lie bracket expressions
is compatible with the composition of corresponding endomorphisms.
This gives A the structure of a Lie algebra.

Coalgebra structures can also be defined via operads. The coendo-
morphisms of an object coend(A) =

∐
nHom(A,A⊗n) also form an

operad: It is graded, with symmetric group action, and has a natural
map coend(A)◦coend(A)→ coend(A) also given by plugging things
into each other. Replacing end by coend changes algebra structures to
coalgebra structures. For example a map of operads lie → coend(A)
identifies a coendomorphism of A for each Lie bracket expression, thus
giving A a Lie coalgebra structure.

This is a common point of view (see e.g. [11]), but there is an alterna-
tive. For clarity, we will continue with the example of Lie algebras. A Lie
algebra structure is maps lie(n)→ Hom(A⊗n, A) which is equivalent to
maps lie(n)⊗A⊗n → A (ignore Σn-actions for the moment). Dually, a
Lie coalgebra structure is maps lie(n)→ Hom(A,A⊗n) which is equiva-
lent to maps lie(n)⊗A→ A⊗n which is equivalent to A→

(
lie(n)

)∗
⊗

A⊗n. (Dualizing lie(n) should not introduce trouble, because it is finite
dimensional.) The level-wise dual object liě =

∐
n

(
lie(n)

)∗
has struc-

ture dual to that of lie. This is a cooperad. (The precise definition is
the subject of the current paper.)

Experience [9] [10] has shown that it is sometimes more useful to
directly work with cooperads and cooperad structures when describing
coalgebras rather than continually referring all the way back to operads
and operad structures. Also sometimes coalgebras can have a more
natural expression as coalgebras over cooperads, rather than coalgebras
over operads. Just as operads can be thought of as “a bunch of objects
which are plugged into each other”, cooperads can be thought of as “a
bunch of objects where subobjects are removed or quotiented”.

Unfortunately category theory causes a slight hitch when attempting
to blindly dualize operad structure to define cooperads. The dual of
operad composition is cooperad composition, which is similar except
for some colimits being replaced by limits. The problem comes when
looking at associativity. In a symmetric monoidal category ⊗ is left
adjoint (to Hom) so it will commute with colimits. This allows operad
composition products to be associative (e.g. (lie◦lie)◦lie = lie◦(lie◦
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lie)). However, this will generally not happen for cooperad composition
(e.g. (lieˇ• liě ) • liě 6= liě • (liě • liě )). This issue crops up for
example, in the cooperadic cobar constructions of Ching in his thesis [4]
and arXiv note [5].

We work by defining a new composition product – a composition
product of tree-functors. The motivating intuition is that the composi-
tion product of two symmetric sequences should not itself be a symmetric
sequence – in particular its group of symmetries is much too large. Maps
to and from the tree-functor composition product can be expressed as
maps to and from universal extensions, which yields the classical operad
and cooperad composition products. Using the tree-functor composition
product (rather than its Kan extension) when describing or defining co-
operads greatly simplifies bookkeeping; though it turns out that, for
operads, it doesn’t really make a difference.

We begin by introducing the notation of wreath product categories.
These are inspired by the wreath product categories of Berger [2], and
at the most basic level are merely Groethendieck constructions. Wreath
product categories are defined so that they will be the natural source
category for iterated composition products of symmetric sequences. We
use this to give a simple definition of cooperads and prove all of the
standard structure holds. Then we describe comodules and coalgebras.
We finish with simple examples related to work in [9], [10], and [13].

In the sequel [12] we use the structure presented here to build cofree
coalgebras, connecting to the constructions of Fox [6] and Smith [11].

We assume that the reader is comfortable with the category theory
notions of adjoint functors and Kan extensions, as well as basic simplicial
and cosimplicial structures. A familiarity with the classical definitions
of operads and their modules/algebras is not required, but would be
helpful.

2 Wreath product categories

This section is divided into two parts. In the first subsection, we de-
fine wreath product categories using functors to the category of finite
sets. Our definition is related to, but more general than, the dual of re-
fined partitions of sets as used in literature by e.g. Arone-Mahowald [1].
The salient difference between wreath categories and refined partitions
is that wreath categories incorporate the empty-set (see Remark 2.8).
In the second subsection, an equivalent definition is given in terms of
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labeled level trees – a more familiar category for the discussion of oper-
ads.

The neophyte reader (or the reader looking for an immediate con-
nection to classical constructions) may find it useful to read §2.2 before

§2.1.

2.1 Wreath Products

Write Σn for the category of n-element sets and set isomorphisms and
Σ∗ =

∐
n≥0Σn for the category of all finite sets and set isomorphisms

(Σ0 = ∅). Our notation reflects the fact that a functor Σn → C is merely
an object of C with a Σn-action.

There is an alternative way to express Σn. Write FinSet for the
category of finite sets and all set maps, and write [n] for the category

1
f1
−→ 2

f2
−→ · · ·

fn−1
−−−→ n. Then Σ∗ is equivalent to the category of functors

[1] → FinSet and natural isomorphisms. We generalize this to define
wreath product categories.

Definition 2.1. The wreath product category Σ≀n
∗ is the category of

contravariant functors [n]→ FinSet and natural isomorphisms.

Remark 2.2. We will write objects of Σ≀n
∗ as sequences of maps of finite

sets, indexed in the following manner.

S1
f1
←− S2

f2
←− · · ·

fn−1

←−−− Sn

Since [n] ∼= [n]op, the use of contravariant functors in Definition 2.1 is
purely cosmetic. Using covariant functors would change nothing, except
that indices would not line up as perfectly later on.

Note that we are clearly defining the levels of a simplicial category.
Before continuing in that direction, however, we will explain our choice
of notation via an equivalent, hands-on definition of wreath products
with a generic category A.

Definition 2.3. The wreath product category Σn ≀ A is the category
with

• objects Obj(Σn ≀ A) =
{
{As}s∈S

∣∣ S ∈ Obj(Σn), As ∈ Obj(A)
}

given by n-element sets of decorated objects of A;

• and morphisms
(
σ; {φt}t∈T

)
: {At}t∈T −→ {Bs}s∈S given by a set

isomorphism σ : T → S and a set of A-morphisms φt : At → Bσ(t).
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The wreath product category Σ∗ ≀A is given by Σ∗ ≀A :=
∐

n≥0Σn ≀A.

Remark 2.4. Σ0 ≀A is the empty category, since {As}s∈∅ = ∅. Further-
more Σ∗ ≀ Σ0

∼= Σ∗
∼= Σ1 ≀ Σ∗. These equivalences are given by writing

objects of Σ∗ ≀ Σ0 as
{
∅s
}
s∈S

and objects of Σ1 ≀ Σ∗ as
{
S⋆

}
and using

the facts that ∅ is initial and a one point set ⋆ is final in FinSet. We
make further use of these equivalences later. Note that Σ∗ ≀ Σ1 ≇ Σ∗

because one point sets are not initial in FinSet.

The following proposition is easy to check.

Proposition 2.5. Definitions 2.1 and 2.3 agree:

• Σ≀2
∗
∼= Σ∗ ≀ Σ∗, and more generally

• Σ≀n
∗
∼= Σ∗ ≀

(
Σ≀n−1
∗

)
∼=

n︷ ︸︸ ︷
Σ∗ ≀ (· · · ≀ (Σ∗ ≀ Σ∗)).

Proof Sketch: The object
(
S

f
←− T

)
of Σ≀2

∗ corresponds to the object{
f−1(s)s

}
s∈S

of Σ∗ ≀ Σ∗.

The object
{
As

}
s∈S

corresponds to
(
S

π
←−

∐

s∈S

As

)
where π is the

map on the coproduct induced by πs : As → {s} ⊂ S.

Using notation from Definition 2.3, the endomorphisms of the wreath
product category Σn ≀ Σm correspond to the automorphisms of an n-
element set of m-element sets S = {A1, . . . , An} with |Ai| = m. Ele-
ments within each Ai can be permuted by Σm and the Ai “blocks” are
permuted by Σn – this is the wreath product group Σn ≀ Σm. Thus, a
functor Σn ≀ Σm → C is an object of C equipped with an action of the
wreath product group Σn ≀ Σm. We view Σ∗ ≀ Σ∗ as a generalization of
this basic example – the “blocks” Ai no longer need to be same size,
and there can be an arbitrary number of them.

We return to the simplicial structure of the collection of wreath
products

∐
nΣ

≀n
∗ . Recall that there are standard “face” functors

∂n
i : [n]→ [n− 1]

for 1 ≤ i ≤ (n− 1), given by composing morphisms or forgetting 1 (for
reasons to be explained shortly, we do not use the “forget n” face map,
∂n
n).

∂n
1 (1

f1
−→ · · ·

fn−1
−−−→ n

)
=
(
2→ · · · → n

)

∂n
i

(
1

f1
−→ · · ·

fn−1
−−−→ n

)
=
(
1→ · · · → (i− 1)

fi◦fi−1
−−−−→ (i+ 1)→ · · · → n

)
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Furthermore, (because we do not allow the use of ∂n
n functors) any

chain of (n− 1) compositions ∂2
i2
◦ · · · ◦ ∂n

in
: [n]→ [1] equals the functor

γn : [n]→ [1] which forgets all but the top object.

γn
(
1

f1
−→ · · ·

fn−1

−−−→ n
)
=
(
n
)

We will write ∂n
i and γn also for the induced functors ∂n

i : Σ≀n
∗ → Σ

≀(n−1)
∗ ,

for 1 ≤ i ≤ (n − 1), and γn : Σ≀n
∗ → Σ∗. When n is clear from context

we may write merely ∂i and γ.

Remark 2.6. In the notation of Definition 2.3, the map γ2 = ∂2
1 :

Σ∗ ≀ Σ∗ → Σ∗ is given by {St}t∈T 7→
∐

T St. All other ∂n
i and γn are

induced by this (see Proposition 2.10).

Before describing the degeneracy maps, we explain the missing ∂n
n .

Recall that Σ∗ is equivalent to the full subcategory Σ̃∗ = Σ1 ≀ Σ∗ ⊂
Σ∗ ≀ Σ∗ of functors sending 1 to a one-element set. More generally, Σ≀n

∗

is equivalent to the full subcategory Σ̃≀n
∗ = Σ1 ≀ Σ

≀n
∗ ⊂ Σ≀n+1

∗ of functors
sending 1 to a one-element set. Objects of Σ̃≀n

∗ are sequences of set maps

⋆
f0
←− S1

f1
←− · · ·

fn−1

←−−− Sn

Under this correspondence the face functors ∂̃n
i : Σ̃≀n

∗ → Σ̃≀n−1
∗ , for

1 ≤ i ≤ (n− 1), are all given by composition; however the functor ∂̃n
n is

not.

∂̃n
i

(
⋆

f0
←− S1

f1
←− · · ·

fn−1
←−−− Sn

)
=

(
⋆← · · · ← Si−1

fi−1◦fi
←−−−− Si+1 ← · · · ← Sn

)

(Our indexing convention is for the one point set to be ⋆ = S0 in Σ̃≀n
∗ ).

Operad and cooperad structure is induced by structure of Σ̃≀n
∗ and

∂̃n
i . Instead of working with this directly, we use the equivalent cat-

egories and functors Σ≀n
∗ and ∂n

i ; because in practice keeping track of
the final, one point set at the bottom of each sequence is unnecessarily
tedious.

We continue with the degeneracies of the simplicial structure, which
are most conveniently written via the equivalent categories Σ̃≀n

∗ . In this
notation, the degeneracy functors s̃ni : Σ̃≀n

∗ → Σ̃≀n+1
∗ for 0 ≤ i ≤ n are

the doubling maps.

s̃ni
(
⋆

f0
←− S1

f1
←− · · ·

fn−1

←−−− Sn

)
=
(
⋆← · · · ← Si

Id
←− Si ← · · · ← Sn

)
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Note that defining the degeneracy sn0 on the level of Σ≀n
∗ requires picking

a distinguished one point set. A reader averse to making choices should
replace all Σ∗, ∂i, etc. by Σ̃∗, ∂̃i, etc. from now on.

It is classical that the degeneracies sni−1 and sni are each sections of

the face map ∂n+1
i on the level of [n]. Thus face and degeneracy maps

combine to give a collection of categories and functors:

· · · Σ∗ ≀ Σ∗ ≀ Σ∗ ≀ Σ∗ Σ∗ ≀ Σ∗ ≀ Σ∗ Σ∗ ≀ Σ∗ Σ∗

where the dashed, left-pointing arrows are sections of their neighboring
right-pointing arrows and all pairs of neighboring right-pointing arrows
are coequalized by an arrow out of their target. Under the correspon-
dence Σ≀n

∗
∼= Σ̃≀n

∗ ⊂ Σ≀n+1
∗ , this is very explicitly a simplicial category

with the bottom level as well as the first and last face maps removed;
equivalently, an augmented simplicial category with two extra degen-
eracies.

Remark 2.7. We could express all of the standard face maps ∂n
i , 1 ≤

i ≤ n, as compositions by writing Σ≀n
∗
∼= Σ

≀n
∗ = Σ1 ≀Σ

≀n
∗ ≀Σ0 ⊂ Σ≀n+2

∗ , the
full subcategory of functors sending (n+2) to the empty-set and 1 to a
one-element set. Then ∂n

n becomes:

∂
n
n

(
⋆

f0
←− S1

f1
←− · · ·

fn−1

←−−− Sn
fn
←− ∅

)
=

(
⋆← S1 ← · · · ← Sn−1

fn−1◦fn
←−−−−− ∅

)

The Σ
≀n
∗ fit together to make an (unaugmented) simplicial category with

two extra degeneracies. In the next section, the levels of this will be
given an alternate definition and called ∅̂n. This structure is useful for
constructing algebras and coalgebras instead of operads and cooperads.

Remark 2.8. Another construction which has been useful in the past
for describing and working with operads uses the category of sets equi-
pped with iterated refinements of partitions where morphisms are given
by set isomorphisms respecting all partition equivalences (see Arone-
Mahowald [1] and Ching [4]) . A partition of a set S is equivalent to a
surjective set map S → T where T is the partition set. An iterated
partition of a set S is equivalent to a functor from [n] to the category
of finite sets and surjections (instead of the category of finite sets and
all set maps). This is sufficient for describing operads and cooperads
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which are trivial in “0-arity”. So partitions cannot be used to describe,
for example, an operad of algebras over an algebra. Also missing 0-arity
means that partitions cannot work with algebras (or coalgebras) as just
a special case of modules (or comodules).

Before continuing with the next subsection, we will combine Defi-
nitions 2.1 and 2.3 to get a more general definition of wreath products
with generic categories, necessary to discuss associativity.

Definition 2.9. The wreath product category Σ≀n
∗ ≀ A is the category

with

• Obj(Σ≀n
∗ ≀ A) =

{(
F, {As}s∈F (n)

)
| F ∈ Obj(Σ≀n

∗ ), As ∈ Obj(A)
}

• morphisms
(
Φ; {φs}s∈F (n)

)
:
(
F, {As}

)
→
(
G, {Bt}

)
given by

a natural isomorphism Φ : F → G and a set of A-morphisms
φs : As → B(Φn)(s)

Objects of Σ≀n
∗ ≀ A can be written as sequences of set maps

S1
f1
←− S2

f2
←− · · ·

fn−1
←−−− Sn−1

fn
←−

{
As

}
s∈Sn

.

Morphisms are level-wise set isomorphisms accompanied by (at the top

level) A-maps As → Bt (where φ : Sn

∼=
−→ Tn with φ(s) = t). In

the following subsection we will give an alternate way to describe these
objects via labeled trees.

Proposition 2.10. Wreath product is associative:

(Σ∗ ≀ Σ∗) ≀ Σ∗
∼= Σ∗ ≀ (Σ∗ ≀ Σ∗) ∼= Σ≀3

∗ .

More generally, Σ≀n
∗ ≀ Σ

≀m
∗
∼= Σ≀n+m

∗ . Furthermore, the face maps ∂n
i are

all induced by γ2 = ∂2
1 as

∂n
i = Id ≀ γ2 ≀ Id : Σ≀i−1

∗ ≀
(
Σ∗ ≀ Σ∗

)
≀ Σ≀n−i−1

∗ −→ Σ≀i−1
∗ ≀

(
Σ∗

)
≀ Σ≀n−i−1

∗ .

For example ∂3
1 = γ2 ≀ Id and ∂3

2 = Id ≀ γ2.

2.2 Level trees

In this subsection we connect the wreath product constructions of the
previous subsection with the classical, visual, method of describing op-
erads via trees.
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For our purposes a tree is a (nonempty) non-cyclic, connected, finite
graph whose vertices are distinguished as: a “root vertex” of valency
1, a (possibly empty) set of “leaf vertices” of valency 1, and all other
vertices called “interior vertices”. We require each tree to have a root
and at least one interior vertex; however, we do not require that interior
vertices have valency > 1 – despite the oxymoron (in particular, we allow
the tree with a root, an “interior vertex” but no leaves as in Figure 1). A
tree isomorphism is an isomorphism of vertex and edge sets, preserving
root and leaf distinctions.

For convenience of notation we will orient all edges of our trees so
that they point towards the root vertex; when drawing trees, we will not
explicitly indicate this orientation, but rather always position the root
at the bottom and the leaves at the top, with the understanding that all
edges point downwards. We will denote interior vertices with a darkened
dot •, but we will not draw the root or leaf vertices – instead we will
indicate only the edges connecting to them. Also for convenience, we
will draw trees on the plane, however we consider them as non-planar
objects. In particular, we will not assert any planar orderings on vertices
or edges.

There is a natural height function on the vertices of trees – assigning
to each vertex the number of vertices on the path between it and the
root (the vertex adjacent to the root has height 0; the root has height
-1). A “level n tree” is a tree whose leaves all have height n and whose
interior vertices have height < n. A “level tree” is a tree which is level
n for some n. Note that a level n tree may have branches without leaves
which contain no interior vertices of height (n − 1), as in Figure 1. In
particular, a tree with no leaves may be level n as well as level (n+ 1),
etc.

•
• •
•

•
•

• •
• •

• • •

•
•• •

• • •
• • • •

Figure 1: Some examples of level 2 trees and a level 4 tree

If v is the target of the directed edge e then we say e is an “incoming
edge” of v and we write In(v) for the set of incoming edges of v. In our
drawings, incoming edges are edges abutting a vertex from above. Each
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non-root vertex also has one “outgoing edge” (the abutting edge on the
path from the vertex to the root), which will be drawn connecting to
the vertex from below.

Definition 2.11. A labeled level tree is a level tree equipped with

labeling isomorphisms {lv : Sv

∼=
−−→ In(v)}v from finite sets to the sets

of incoming edges at each vertex. Let Ψ be the category of all labeled
level trees with morphisms given by tree isomorphisms. Let Ψn be the
full subcategory of Ψ consisting of only level n trees.

Since there is always only one incoming edge at the root, and never
any incoming edges at leaves, we may equivalently label only the incom-
ing edges at interior vertices.

Definition 2.12. Given a category A define the wreath product cate-
gory Ψ ≀ A to be the category of all labeled level trees whose leaves are
decorated by elements of A; morphisms are given by tree isomorphisms
equipped with A-morphisms between the leaf decorations compatible
with the induced isomorphism of leaf sets. Let Ψn ≀ A be the full sub-
category of this consisting of only level n trees.

•
i

•
i j

•
ji k

•
•

Ai

i

•

Ai Aj

i j

•

Ai AjAk

ji k

•

Figure 2: Some objects of Ψ1 and of Ψ1 ≀ A

It is standard to note that the category Σ∗ may be identified with
the category Ψ1 of labeled level 1 trees. In this vein, the wreath product
category Σ∗ ≀A may be identified with Ψ1 ≀A. More generally, the wreath
product category Σ∗ ≀ Σ∗ is equivalent to the category Ψ2 of all labeled
level 2 trees; and the iterated wreath product category Σ≀n

∗ is equivalent
to Ψn the category of all labeled level n trees.

Proposition 2.13. There are equivalences of categories:

Ψ1
∼= Σ∗, Ψ1 ≀ A ∼= Σ∗ ≀ A, Ψn

∼= Σ≀n
∗ , and Ψn ≀ A ∼= Σ≀n

∗ ≀ A.

Example 2.14. The elements of Σ̃≀2
∗ corresponding to the Ψ2 elements

in Figure 3 are given by the following chains of maps in FinSet:

•
(
⋆← ∅ ← ∅

)
.
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•
i1 i2

• •

•
i

•
j

•
i1 i2

• •
j1 j2

• •
i1 i2 i3

• • •
j1 j2 j3 k1 k2

Figure 3: Some objects of Ψ2

•
(
⋆← {i2, i2} ← ∅

)
.

•
(
⋆← {i}

f
←− {j}

)
where f(j) = i.

•
(
⋆← {i1, i2}

f
←− {j1, j2}

)
where f(js) = i1.

•
(
⋆ ← {i1, i2, i3}

f
←− {j1, j2, j3, k1, k2}

)
where f(js) = i1 while

f(kt) = i3.

Under this identification, the functor γ2 = ∂2
1 : Ψ2 → Ψ1 operates

by forgetting the height 1 vertices on a level 2 tree. Paths from the
height 0 interior vertex to leaves (on level 2) are replaced by edges; the
labeling of each such edge is given by the path labeling of the path which
it replaces, as in Figure 4.

γ2 = ∂2
1 :

•
i1 i2 i3

• • •
j1 j2 j3 k1 k2

7−→
•

i1j1 i1j2 i1j3 i3k1 i3k2

Figure 4: An example of γ2 : Ψ2 → Ψ1

Similarly, the functors γn : Ψn → Ψ1 operate by forgetting all inte-
rior vertices except for those of height 0; replacing paths by edges carry-
ing the paths’ labels. The face functors ∂n

i : Ψn → Ψn−1 for 1 ≤ i ≤ n−1
are given by forgetting only the vertices of level i of a level n tree. (The
disallowed face functor ∂n

n would forget the leaves.) The degeneracy
functors sni : Ψn → Ψn+1 for 0 ≤ i ≤ n are given by “doubling” –
replace each vertex v at level i by two vertices connected by a directed
edge ev, attached to the tree such that all incoming edges connect to
source vertex of ev and the outgoing edge connects to the target vertex
(for the labeling, allow each edge to label itself lt(ev) : {ev} → {ev}).
Note that the degeneracy snn doubles the leaf vertices – the leaves of the
resulting tree are the sources of the edges ev .

Remark 2.15. We very purposefully do not use the notation Υ for our
category of level trees, since that notation is already commonly used
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s10 :
ji k

• 7−→

ji k

•
e

•

s11 :
ji k

• 7−→

ji k

•• •
e2e1 e3

•

Figure 5: An example of s10, s
1
1 : Ψ1 → Ψ2

to denote the category consisting of all trees. The category Ψ differs
from this both on the level of objects (only level trees) and on the
level of morphisms (only isomorphisms of trees – in particular, no “edge
contraction” maps).

Remark 2.16. Note that Ψ is not isomorphic to the category Ψ∗ =∐
nΨn. Write ∅̂n for the full subcategory of Ψn consisting of trees with

no leaves. Then ∅̂n is a full subcategory of ∅̂n+1. In terms of the Ψn,
the category Ψ itself is given by

Ψ ∼= Ψ1

∐

∅̂1

Ψ2

∐

∅̂2

Ψ3

∐

∅̂3

Ψ4 · · ·

In the notation of the previous subsection, an element of ∅̂n is equivalent
to a contravariant functor [n] → FinSet sending n to the empty-set as
in Remark 2.7.

3 Symmetric sequences, composition products,

and cooperads

3.1 Symmetric Sequences

Let (C,⊗, 1⊗) be a symmetric monoidal category with monoidal unit 1⊗.
In order to have all desired Kan extensions exist, we will further require
that C is cocomplete. Write ⋆C for the final object of C. [In order to
dualize to operads, we would require C be complete with initial object
∅C .]

Definition 3.1. A symmetric sequence is a functor A : Σ∗ → C.

Recall that a functor Σ∗ → C is equivalent to a sequence of objects
{A(n)}n≥0 of C along with a symmetric group action on each A(n).
We will make use of this viewpoint when convenient without further
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comment. If A is a symmetric sequence, then we will refer to A(n) as
the “n-ary part of A” since for operads it will encode n-ary algebra
operations. (The “0-ary operations” require no input. For example, in
the category of algebras over a field, elements of the base field are all
0-ary operations.)

3.2 Composition of Symmetric Sequences

We define a “product” operation on symmetric sequences. It is impor-
tant to note that our product will not itself be a symmetric sequence.
Instead it is a larger diagram, reflecting a larger group of symmetries.
The traditional composition product of operads as well as our cooperad
composition product are Kan extensions of this symmetric sequence
product.

Definition 3.2. Given A1, . . . , An : Σ∗ → C define (A1 ⊚ · · · ⊚ An) :

Σ̃≀n
∗ → C by

(
⋆

f0
←− S1

f1
←− · · ·

fn−1
←−−− Sn

)
7−→

⊗

0≤i≤n−1



⊗

s∈Si

Ai+1

(
f−1
i (s)

)



with the convention that ⋆ = S0.

Define A1 • · · · •An to be the right Kan extension of A1 ⊚ · · ·⊚An

over the map γ : Σ≀n
∗ −→ Σ∗.

Σ∗ A1•···•An := RγA1⊚···⊚An

Σ∗ ≀ · · · ≀ Σ∗
A1⊚···⊚An

γ

C
ι

Write ι : (A1 • · · · • An) γ → A1 ⊚ · · · ⊚ An for the universal natural
transformation.

[Dually, to construct operads , we would define A1 ◦ · · · ◦ An to be
the left Kan extension over γ.]

Remark 3.3 (For young readers). The symmetric sequence A • B is
completely determined by the property that every natural transforma-

tion Cγ
ζ
−→ A ⊚ B factors uniquely as Cγ

ξ
−→ (A • B)γ

ι
−→ A ⊚ B.

Dually, A ◦ B is determined by the the unique factorization of every

transformation A⊚B
ρ
−→ Dγ as A⊚B

π
−→ (A ◦B)γ

β
−→ Dγ.
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Using the notation of Definition 2.9, we can generalize the above
definition slightly in order to discuss associativity.

Definition 3.4. Given A : Σ≀n
∗ → C and B : A → C, define (A ⊚ B) :

Σ≀n
∗ ≀ A −→ C by

(
A⊚B

)(
F, {As}s∈F (n)

)
= A(F ) ⊗



⊗

s∈F (n)

B(As)


 .

Remark 3.5 (Completed tensor product). The discussion of coalgebras
via cooperads in the introduction glossed over an important subtlety.
The dual of the endomorphism operad is

∐

n

Hom(A∗, (A⊗n)∗) =
∐

n

Hom(A∗, (A∗)⊗̂n)

where ⊗̂ is the “completed” tensor product (if C∗ is a category where
this exists). The product ⊗̂ is a right adjoint (rather than left adjoint)
to Hom. In cases where it exists, ⊗̂ is usually something like “formal,
infinite linear combinations of elements a⊗ b”. For coalgebras to satisfy
a maximal number of duality properties with algebras, the completed
tensor product (if it exists) should make an appearance once we begin
discussing coalgebras; but it is not used in the construction of cooperads.
Note that in categories satisfying good finiteness conditions (for example
finitely generated projective bimodules over a commutative ring), A∗ ⊗
B∗ = (A⊗B)∗ = A∗ ⊗̂B∗.

Short calculations yield the following propositions.

Proposition 3.6. The operation ⊚ is associative:

(A1 ⊚A2)⊚A3
∼= A1 ⊚A2 ⊚A3

∼= A1 ⊚ (A2 ⊚A3).

Proposition 3.7. Given A, B symmetric sequences, A •B is given by

(A •B)(n) =
∏

k≥0




∏
∑

r
i
=n

A(k) ⊗B(r1)⊗ · · · ⊗B(rk)



Σk

.

Note that • is probably not associative. This will be discussed in
greater detail in the next section (see Proposition 4.1). The operation
⊚ is clearly functorial. If F : A1 → A2 and G : B1 → B2 are natural
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transformations of functors A1, A2 : Σ≀n
∗ → C and B1, B2 : Σ≀m

∗ → C,
then we write (F ⊚G) : (A1 ⊚B1)→ (A2 ⊚B2) for the induced natural

transformation of functors Σ≀n
∗ ≀ Σ

≀m
∗ → C.

In the following subsections, we define cooperad structure and, in
parallel, build the cosimplicial structure induced on

∐
nA

⊚n by the

simplicial structure of wreath product categories
∐

nΣ
≀n
∗ .

3.3 Cocomposition and Coface Maps

Definition 3.8. A symmetric sequence with cocomposition is (A, ∆̃)
where ∆̃ is a cocomposition natural transformation ∆̃ : Aγ2 −→ A⊚A
of functors Σ∗ ≀ Σ∗ → C compatible with the face maps ∂3

1 = (γ2 ≀ Id)
and ∂3

2 = (Id ≀ γ2).
Write ∆ for the associated universal natural transformation of sym-

metric sequences ∆ : A −→ A •A.

In other words, the following diagram of functors Σ∗ ≀ Σ∗ ≀ Σ∗ → C
should commute.

(1)

(A⊚A)(γ2 ≀ Id) ∆̃≀Id

Aγ3

∆̃

∆̃

A⊚A⊚A

(A⊚A)(Id ≀ γ2) Id≀∆̃

The upper path uses the factorization γ3 = ∂2
1 ◦ ∂

3
1 = γ2 ◦ (γ2 ≀ Id) and

the lower path uses the factorization γ3 = ∂2
1 ◦ ∂

3
2 = γ2 ◦ (Id ≀ γ2).

Applying Proposition 2.10, we may generalize ∆̃ to the following
maps.

Definition 3.9. For a given a symmetric sequence with cocomposition
(A, ∆̃) define associated natural transformations ∆̃n

i : A⊚(n−1)∂n
i →

A⊚n, for 1 ≤ i ≤ (n− 1), which apply ∆̃ at position i. (Thus ∆̃ = ∆̃2
1.)

These natural transformations induce coface maps on
∐

nA
⊚n in the

following manner. Since γn−1 ∂n
i = γn and ∂n

i is epi, transformations
B γn → A⊚(n−1) ∂n

i are equivalent to transformations Bγn−1 → A⊚(n−1)

(where B : Σ∗ → C is some symmetric sequence). Therefore there is an
equality of right Kan extensions Rγn

(
A⊚(n−1) ∂n

i

)
= Rγn−1

(
A⊚(n−1)

)
=

A•(n−1). (We will make extensive use of this equality in later sections
without further comment.)
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Define ∆n
i : A•(n−1) → A•n to be the following map.

(2)
A•(n−1) A•n

Rγn

(
A⊚(n−1) ∂n

i

) Rγn (∆̃
n
i )

Rγn

(
A⊚n

)

Under right Kan extension, Diagram (1) translates to the following
diagram of symmetric sequences.

(3)

A • A
∆3

1

A

∆

∆

A •A •A

A • A
∆3

2

Combined with Proposition 2.10, this generalizes to the following.

Proposition 3.10. Let (A, ∆̃) be a symmetric sequence with cocompo-
sition. Then the transformation ∆n

i : A•(n−1) → A•n equalizes the two
transformations

∆n+1
i , ∆n+1

i+1 : A•n
⇒ A•(n+1).

More generally, ∆n+1
j ∆n

i = ∆n+1
i ∆n

j−1 for j > i.

Corollary 3.11. Let (A, ∆̃) be a symmetric sequence with cocomposi-
tion. There are canonical, unique maps ∆[n] : A → A•n. (Given by
taking any chain of compositions ∆n

in
· · ·∆1

i1
.)

3.4 Counit and Codegeneracies

Write 1 for the functor 1 : Σ∗ → C given by

1(T ) =

{
1⊗ if |T | = 1,

⋆C otherwise.

We will call 1 the “counit” symmetric sequence. [The dual definition of
the “unit” symmetric sequence would use ∅C .]

Definition 3.12. A counital symmetric sequence is (A, ǫ̃) where A is
a symmetric sequence and ǫ̃ is a natural transformation to the counit
ǫ̃ : A→ 1.

Note that being counital is equivalent to the existence of a map
A(1) → 1⊗. We will not require the map A(1) → 1⊗ to be equipped
with a section. In the next subsection, we will use the following basic
equality whose proof can be read off of Figure 5.
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Lemma 3.13. The following functors Σ∗ → C are equal.

(
1⊚A

)
s10 = A =

(
A⊚ 1

)
s11.

More generally, the following functors Σ≀n
∗ → C are equal.

((
A⊚i

)
⊚ 1⊚

(
A⊚(n−i)

))
sni = A⊚n

In the footsteps of Lemma 3.13 we define the following generaliza-
tion.

Definition 3.14. Given a counital symmetric sequence (A, ǫ̃) define
associated natural transformations ǫ̃ni : A⊚(n+1)sni → A⊚n, for 0 ≤ i ≤
n, to be the following compositions.

A⊚(n+1)sni A⊚n

((
A⊚i

)
⊚A⊚

(
A⊚(n−i)

))
sni

(Id⊚ǫ̃⊚Id) sni
((

A⊚i
)
⊚ 1⊚

(
A⊚(n−i)

))
sni

Define ǫ̃00 = ǫ̃ : A→ 1.

These natural transformations induce codegeneracies in the follow-
ing manner. Since γn+1 sni = γn, the universal transformation

A•(n+1) γn+1 → A⊚(n+1)

induces a transformation A•(n+1) → Rγn

(
A⊚(n+1) sni

)
. Define ǫni :

A•(n+1) → A•n to be the following composition.

(4)
A•n

A•(n+1) Rγn

(
A⊚(n+1) sni

) Rγn (ǫ̃
n
i )

Rγn

(
A⊚n

)

Similar to Proposition 3.10, the corresponding properties of sni imply
the following.

Proposition 3.15. Let (A, ǫ̃) be a counital symmetric sequence. Then
the transformation ǫn−1

i : A•n → A•(n−1) coequalizes the two transfor-
mations ǫni , ǫ

n
i+1 : A•(n+1)

⇒ A•n. More generally ǫn−1
i ǫnj = ǫn−1

j−1 ǫ
n
i for

j > i.
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3.5 Cooperads and Cosimplicial Structure

Definition 3.16. A cocomposition operation on a counital symmetric
sequence respects the counit if the following diagram of natural trans-
formations Σ∗ → C commutes.

(5)

Aγ2s10
∆̃s1

0
(A⊚A)s10

(ǫ̃⊚Id)s1
0

(1⊚A)s10 =

A Id

=

=

A

Aγ2s11
∆̃s1

1

(A⊚A)s11 (Id⊚ǫ̃)s1
1

(A⊚ 1)s11
=

A counital cooperad is a counital symmetric sequence with cocom-
position which respects the counit.

By applying Proposition 2.10 and using the simplicial structure of
wreath product categories, the requirement in Definition 3.16 implies a
more general statement.

Proposition 3.17. If (O, ∆̃, ǫ̃) is a cooperad, then the following com-
position is equal to the identity IdO⊚n , for j = (i− 1), i.

O⊚n = O⊚n ∂n+1
i snj

∆̃n+1

i snj
−−−−−−→ O⊚(n+1) snj

ǫ̃nj
−−→ O⊚n

Furthermore, the following compositions are equal if j < i− 1.

O⊚n (∂n+1
i snj )

∆̃n+1

i snj
O⊚(n+1) snj

ǫ̃nj
O⊚n

O⊚n (sn−1
j ∂n

i+1)
ǫ̃n−1

j ∂n
i+1

O⊚(n−1)∂n
i+1

∆̃n
i+1

O⊚n

as well as the similar statement for j > i.

We have now almost completed the proof of the following.

Theorem 3.18. If (O, ∆̃, ǫ̃) is a cooperad, then the collection {O•n}n
along with coface maps ∆n

i and codegeneracy maps ǫni defines a coaug-
mented cosimplicial symmetric sequence with two extra codegeneracies.

(6) O O • O O•3 O•4 · · ·
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Proof. In Propositions 3.10 and 3.15, we have already shown the cosim-
plicial identities ∆n+1

j ∆n
i = ∆n+1

i ∆n
j−1 and ǫn−1

i ǫnj = ǫn−1
j−1 ǫ

n
i .

It remains only to consider the compositions ∆n+1
i ǫnj . These come

from the right Kan extension over γn of the statements of Proposi-
tion 3.17. Note that the right Kan extension

Rγn

(
O⊚n ∂n+1

i snj
∆̃n+1

i snj
−−−−−−→ O⊚(n+1) snj

)

is equal to the composition

Rγn+1

(
O⊚n ∂n+1

i

) ∆n+1

i−−−−−→ Rγn+1

(
O⊚(n+1)

)
−→ Rγn

(
O⊚(n+1) snj

)
.

Corollary 3.19. There are unique transformations ∆[n] : O → O•n.
These are equal to any combination of parenthesization maps and co-
composition maps from their source to their target.

4 Cooperads via • versus ⊚

We will now connect the cooperad structures defined in the previous
sections with the classical methods which would attempt to use only
the induced product • on symmetric sequences. When using •, the lack
of associativity introduces extra “parenthesization” maps, which must
be dealt with carefully.

4.1 Parenthesization Maps.

From now on, let A,B,C be generic symmetric sequences and (O, ∆̃, ǫ̃)
be a generic counital cooperad.

Proposition 4.1. There are canonical “parenthesization” natural trans-
formations:

(A •B) • C

A •B • C

A • (B • C)

More generally there are parenthesization maps to A1 •· · · •An from any
parenthesization of this expression.
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Proof. We show the existence of the map (A •B) •C → A •B •C. The
other maps are similar.

The universal natural transformation (A•B) γ2 −→ (A⊚B) induces
a natural transformation of functors (Σ∗ ≀ Σ∗) ≀ Σ∗ −→ C:

(
(A •B)⊚ C

)
∂3
1 −→ (A⊚B)⊚ C = A⊚B ⊚ C.

The desired map is induced by taking the right Kan extension Rγ3 of
the diagram above.

(A •B) • C A •B • C

Rγ3

((
(A •B)⊚ C

)
∂3
1

)
Rγ3(A⊚B ⊚ C)

Remark 4.2 (On the associativity of •). Without making further as-
sumptions, it is not true that (A • B) • C ∼= A • B • C ∼= A • (B • C).
This would follow from the existence of natural equivalences

(
Rγ2(A⊚

B)
)
⊚ C ∼= R∂3

1
(A ⊚ B ⊚ C) as well as the corresponding equivalence

using ∂3
2 . However, this will generally only occur in the unlikely event of

the symmetric monoidal product commuting with categorical products.
The situation contrasts starkly with that of the operad composition

product, defined dual to • using left rather than right Kan extensions. If
C is a closed monoidal category, then ⊗ is a left adjoint, so it will in par-
ticular commute with categorical coproducts and left Kan extensions. In
this case the parenthesization maps for the operad composition product
are isomorphisms and the operad composition product is associative.

In practice, authors have generally dealt with this in the past by ei-
ther not using cooperads at all, or by (implicitly or explicitly) restricting
their categories so that (· · · )Σn = (· · · )Σn and

∏
=
∐
. In this (very

special case) A •B = A ◦B and there is no problem. Alternately, heavy
restrictions can be placed on C and/or on the category of symmetric se-
quences to force ⊗ to commute with

∏
. For example, in the category of

finitely generated, injective bimodules over a commutative ring, ⊗ = ⊗̂
which is a right adjoint.

Proposition 4.3. Parenthesization maps are associative.

For example the following diagrams commute.

(7)

(A •B • C) •D
(
(A •B) • C

)
•D A •B • C •D

(A •B) • C •D
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(8)

(A •B) • C •D

(A •B) • (C •D) A •B • C •D

A •B • (C •D)

Proof of 4.3. It is enough to consider Diagrams (7) and (8). Commu-
tativity is shown by writing the diagrams as right Kan extensions. The
diagrams above are Rγ4 of the following diagrams of functors Σ≀4

∗ → C.
(7’) (

(A •B • C)⊚D
)
(γ3 ≀ Id)

((
(A •B) • C

)
⊚D

)
(γ3 ≀ Id) A⊚B ⊚ C ⊚D

(
(A •B)⊚ C ⊚D

)
∂4
1

(8’) (
(A •B)⊚ C ⊚D

)
∂4
1

(
(A •B)⊚ (C •D)

)
(γ2 ≀ Id ≀ γ2) A⊚B ⊚ C ⊚D

(
A⊚B ⊚ (C •D)

)
∂4
3

Diagram (7’) is just − ⊚D applied to the following universal diagram
(in which the upper-left map is Rγ3 of the lower-right).

(7”)

(A •B • C) γ3

(
(A •B) • C

)
γ3 A⊚B ⊚C

(
(A •B)⊚ C

)
∂3
1

Diagram (8’) commutes because the upper and lower composition are
both equal to

(
(A •B)⊚ (C •D)

)
(γ2 ≀ Id ≀ γ2)

ι1⊚ι2−−−−−−→ (A⊚B)⊚ (C ⊚D)

Where ι1 : (A • B) γ2 → A ⊚ B and ι2 : (C •D) γ2 → C ⊚ D are the
universal natural transformations from their respective Kan extensions.

4.2 Cooperad Structures

We relate parenthesization maps with cooperad structure. By the func-
toriality of ⊚, there are natural transformations

Id⊚∆ : A⊚O → A⊚ (O •O) and ∆⊚ Id : O ⊚A→ (O • O)⊚A,
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where A is any symmetric sequence. Define the maps Id •∆ and ∆ • Id
to be the natural transformations induced on right Kan extensions via
functoriality of Kan extension. For example

∆ • Id = Rγ2

(
∆⊚ Id

)
: O • A −→ (O • O) • A.

By alternately letting A be a parenthesization of O•k and using functo-
riality of • this defines maps originating in any parenthesization of O•n.
For example

(
(Id • Id) •∆

)
• Id :

(
(O •O) • O

)
• O −→

(
(O •O) • (O • O)

)
• O.

Theorem 4.4. The following diagrams commute (unlabeled maps are
parenthesization):

(O •O) • O

O • O

∆•Id

∆3
1

O • O • O

O • (O • O)

O •O

Id•∆

∆3
2

O • O • O

More generally, parenthesization maps convert Id•∆•Id (and its paren-
thesizations) to ∆4

2, etc.

Proof. We show the first diagram commutes. The second diagram and
more general statement are proven the same.

Consider the diagram below, where maps marked ι are all universal
transformations of right Kan extensions (RFX)F

ι
−→ X.

(9)
(
(O •O) • O

)
γ3

ι ∂3
1

1©
2©

(
(O • O)⊚O

)
∂3
1

ι⊚Id(
O •O

)
γ3

(∆•Id) γ3

ι ∂3
1

∆3
1
γ3

(O ⊚O) ∂3
1

∆̃⊚Id

(∆⊚Id) ∂3
1

3©

(O • O • O) γ3
ι

O ⊚O ⊚O

Parallelograms 1© and 3© commute by functoriality of right Kan ex-
tension. The left side of parallelogram 1© is Rγ2 of the right side, and
the left side of parallelogram 3© is Rγ3 of the right side. Triangle 2©

commutes by functoriality of ⊚ (recall that ι∆ = ∆̃).

Applying Rγ3 along the outside of Diagram (9) yields the following
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(where the map labeled ∗ is the parenthesization map):

(10)

(O • O) • O
=

(O •O) • O

∗
O •O

∆•Id

∆3
1 O • O • O = O •O • O

Example 4.5. The following diagram is commutative (the unlabeled
maps are parenthesizations):

(O • O) • O
(∆•Id)•Id (

(O • O) • O
)
• O

O • O • O
∆•Id•Id

∆4
1

(O • O) • O • O O • O • O • O

Theorem 4.4 has the following corollary:

Corollary 4.6. Commutativity of the following diagrams are equivalent.

(11)

(A⊚A)(γ2 ≀ Id) ∆̃≀Id

Aγ3

∆̃

∆̃

A⊚A⊚A

(A⊚A)(Id ≀ γ2) Id≀∆̃

(12)

A • A
∆•Id

(A • A) • A

A

∆

∆

A •A •A

A • A
Id•∆

A • (A • A)

Thus a cooperad could equivalently be defined as (O, ∆, ǫ) where
O is a symmetric sequence, ∆ : O → O • O so that the analog of
Diagram (12) commutes, and ∆ is compatible with the counit ǫ : O(1)→
1⊗.

5 Comodules and Coalgebras

Throughout this section, let (O, ∆̃O, ǫ̃) be a counital cooperad andM be
a symmetric sequence. The definition of cooperad comodules mirrors
that of coalgebra comodules (dual to algebra modules). The benefit
of viewing cooperads as symmetric sequences is that coalgebras over a
cooperad can be viewed, essentially, as a special type of comodule.
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5.1 Comodules

Definition 5.1. A left O-comodule is (M, ∆̃M ) whereM is a symmetric
sequence and ∆̃M : M γ2 → O ⊚M is compatible with ∂3

1 and ∂3
2 and

s10.

That is, the following diagrams (analogous to Diagrams (1) and (5))
should commute.

(13)

(O ⊚M) (γ2 ≀ Id) ∆̃⊚Id

M γ3

∆̃M

∆̃M

O ⊚O ⊚M

(O ⊚M) (Id ≀ γ2) Id⊚∆̃M

(14) M γ2s10
∆̃M s1

0
(O ⊚M) s10

(ǫ̃⊚Id) s1
0

(1⊚M) s10 =

M Id

=

M

As with cooperads, we write ∆M for the induced universal trans-
formation to the right Kan extension ∆M : M → O •M . There are
induced transformations ∆̃n+1

i :
(
O⊚(n−1)

⊚M
)
∂n+1
i → O⊚n

⊚M and

∆n+1
i : O•(n−1) •M → O•n •M .

Theorem 5.2. Analogous to Theorem 3.18 there is a canonical coaug-
mented cosimplicial complex as below.

M O •M O•2 •M O•3 •M · · ·

Corollary 5.3. There are unique transformations ∆
[n]
M : M → O•(n−1)•

M . These are equal to any combination of parenthesization maps and
cocomposition maps from their source to their target.

Remark 5.4. Right O-comodules could be defined similarly. However
recent experience suggests that right comodules are most interesting
in the non-counital case; in which situation we should use partial co-
composition products rather than cocomposition products. This moves
beyond the scope of the current work.

5.2 Coalgebras

Let a be an object of C and A be a symmetric sequence. Note that a
can be viewed as a functor a : Σ0 → C. Recall the descriptions of the
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category ∅̂n in Remarks 2.16 and 2.7. We may view ∅̂n either as the

category of level n trees with no leaves; or as Σ
≀(n−1)
∗ ⊂ Σ

≀(n+1)
∗ , the full

subcategory consisting of chains of set maps of the following form.

⋆
f0
←− S1

f1
←− · · ·

fn−2

←−−− Sn−1
fn
←− ∅

Note that the category Σ
≀0
∗ consists of only the trivial chain (⋆ ← ∅).

This is equivalent to Σ0.

The face and degeneracy maps of Σ
≀(n+1)
∗ induce the following face

and degeneracy maps on Σ
≀(n−1)
∗ . (We introduce an index shift below

so that ∂̄n
i and s̄nj map from ∅̂n = Σ

≀(n−1)
∗ .)

{
∂̄n
i : Σ

≀(n−1)
∗ → Σ

≀(n−2)
∗ , for 1 ≤ i ≤ (n− 1), and n > 1

s̄ni : Σ
≀(n−1)
∗ → Σ

≀n
∗ , for 0 ≤ i ≤ n and n ≥ 1

The degeneracy map s̄nn doubles ∅, recognizing that a tree without leaves

of level n is also of level (n+1). Note that ∂̄2
1 : Σ

≀1
∗ → Σ0 coequalizes all

chains of face maps from Σ
≀(n−1)
∗ to Σ

≀1
∗ . We write γ̄n for the composition

γ̄n = (∂̄2
i2
· · · ∂̄n

in
).

Under the identification Σ
≀n
∗ ⊂ Σ

≀(n+2)
∗ , Definition 3.2 of symmet-

ric sequence composition restricts to a functor (A1 ⊚ · · ·An−1 ⊚ a) :

Σ
≀(n−1)
∗ → C. For example, A⊚ a is given by the following.

(
⋆

f0
←− S

f1
←− ∅

)
7−→ A(S)⊗

(
⊗

s∈S

a(∅)

)

= A(S)⊗ a⊗|S|

The right Kan extension of Definition 3.2 restricts to a right Kan ex-

tension over γ̄n : Σ
≀(n−1)
∗ → Σ0, yielding the following functor.

A1 • · · · • An−1 • a = Rγ̄n(A1 ⊚ · · ·⊚An−1 ⊚ a) : Σ0 −→ C

For example, (A • a) =
∏

k≥0

(
A(k) ⊗ a⊗k

)Σk

.

Remark 5.5 (Completed tensor product). In categories with a com-
pleted tensor product ⊗̂, the completed coendomorphisms ĉoend(A) =∐

nHom(A, A⊗̂n) form a cooperad. Cocomposition is dual to the com-
position operation on the operad end(A∗). Dualizing the classical alge-
bra definition, coalgebras should be equivalent to objects equipped with
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cooperad maps ĉoend(A)→ O. The completed tensor should be a right

adjoint to Hom so that this is equivalent to maps A→ O(n) ⊗̂A⊗̂n. In
this case, the definition of coalgebras above should use ⊗̂ rather than
⊗ (though ⊗ should still be used for the cooperad). A more detailed
survey of this issue is beyond the scope of the current work, which is
intended to focus on cooperads.

Definition 5.6. A coalgebra over the cooperad (O, ∆̃, ǫ̃) is (c, ∆̃c) where
c is an object of C and ∆̃c : c γ̄

2 → O ⊚ c is compatible with face maps
∂̄2
1 = (γ2 ≀ Id), ∂̄2

2 = (Id ≀ γ̄2) and degeneracy s̄10.

That is, the following diagrams (analogous to Diagrams (13) and
(14)) should commute.

(15)

(O ⊚ c)(γ2 ≀ Id) ∆̃⊚Id

c γ̄3

∆̃c

∆̃c

O ⊚O ⊚ c

(O ⊚ c)(Id ≀ γ̄2) Id⊚∆̃c

(16) c γ̄2s̄10
∆̃c s̄

1
0
(O ⊚ c) s̄10

(ǫ̃⊚Id) s̄10
(1⊚ c) s̄10 =

c Id

=

c

Statements and proofs about left comodules translate into state-
ments and proofs about coalgebras by converting ∂n

i , s
n
i into ∂̄n

i , s̄
n
i .

Essentially, coalgebras are left comodules which are concentrated in 0-
arity. Write ∆c for the induced map (in C) ∆c : c → O • c. As with
comodules we have ∆̃n+1

i :
(
O⊚(n−1)

⊚ c
)
∂̄n+1
i → O⊚n

⊚ c inducing

∆n+1
i : O•(n−1) • c→ O•n • c.

Theorem 5.7. The comultiplication ∆c defines a canonical coaugment-
ed cosimplicial complex (in C)

c O • c O•2 • c O•3 • c · · ·

Corollary 5.8. There are unique C-maps ∆[n] : c −→ O•(n−1)•c. These
are equal to any combination of parenthesization maps and cocomposi-
tion maps from their source to their target.
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6 Examples

We end with a two simple examples of cooperads which are not duals of
standard operads. Both of these are constructed via quotient/contrac-
tion operations. The (directed) graph cooperad is used in [9] and the
contractible ∆ complex operad is a generalization.

6.1 The Graph Cooperad

Given a finite set S, a contractible S-graph is a connected, acyclic graph
whose vertex set is S. The unoriented graph cooperad has gr(S) equal
to the free Z module generated by all contractible S-graphs. The co-
composition natural transformation ∆̃ : gr γ2 → gr ⊚ gr is defined as
follows.

Given two graphs G and K, a quotient map of graphs q : G ։ K
is a surjective map from vertices of G onto vertices of K such that
q(v1, v2) =

(
q(v1), q(v2)

)
defines a map sending edges of G to edges and

vertices (if q(v1) = q(v2)) of K, surjecting onto the edges. Note that
if q : G ։ K is a quotient map and v is a vertex of K, then q−1(v)
is a subgraph of G. A graph contraction is a quotient map where each
q−1(v) is a connected subgraph. Note that there is a bijection between
the edges of G and the edges of K union those of the q−1(v).

Suppose G is an S-graph and f : S ։ T is a surjection of sets.
Given t ∈ T , let f−1(t) be the maximal subgraph of G supported by
the vertices of f−1(t). We say that f induces a graph contraction on G
if f−1(t) is contractible for each t. In this case, we define the induced
contracted graph (G/f) to have vertices T with an edge from vertex t1
to t2 if there is an edge in G from the subgraph f−1(t1) to the subgraph
f−1(t2).

Cocomposition ∆̃ takes the element
(
T

f
←− S

)
of Σ∗ ≀Σ∗ to the map

gr(S) −→ gr(T )⊗
(⊗

t∈T

gr(f−1(t))
)

which takes a S-graph G to (G/f)⊗
(⊗

t∈T f−1(t)
)
if f defines a graph

contraction on G, and sends G to 0 otherwise. Since the quotient opera-
tion described previously is clearly associative, this defines a symmetric
sequence with cocomposition. The counit map sends S-graphs with only
one vertex to 1 ∈ Z and kills all others.

The (directed) graph cooperad is similar to the unoriented graph
cooperad. In the category of directed, contractible S-graphs define
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−⇀
gr(S) = gr(S)/ ∼, where ∼ identifies reversing the orientation of an
edge with multiplication of a graph by −1. Cocomposition on gr gives
a well-defined map on

−⇀
gr since reversing an arrow in G will reverse

exactly one arrow either in the quotient graph G/f or in one of the
f−1(t).

Free nilpotent coalgebras over the graph cooperad can be written
as free Z modules generated by all (finite) graphs with vertices labeled
by the primitive elements. The cooperad structure operates by ripping

out subgraphs. Explicitly ∆̃ takes
(
T

f
←− ∅

)
to the map which takes a

graph G to the sum of terms (G/f)⊗
(⊗

t∈T f−1(t)
)
taken over all set

maps f : Vert(G) → T . [With the convention that G/f = 0 if f does
not define a graph contraction on G.] Note that

∆̃(T
f
←− ∅)

will kill a graph G for all sets T with |T | > |Vert(G)| (because graph
contraction maps cannot increase the number of vertices). Thus this
coalgebra is nilpotent. We will leave the full proof that this is a free
nilpotent coalgebra for the sequel.

The graph cooperad generalizes to the following.

6.2 The CDC Cooperad

By a ∆-complex, we mean what Hatcher [8, Appendix] calls a “singu-
lar ∆-complex” or “s∆-complex”. Essentially this is a CW complex
whose cells are all (oriented) simplices and whose attaching maps factor
through face maps of the simplex. Given a set S, an S∆-complex is a
∆-complex whose 0-cells are labeled by elements of S. The CDC coop-
erad has cdc(S) equal to the free Z module generated by contractible
S∆-complexes. Cocomposition is defined similar to that for gr.

If T is a subset of the 0-cells of a ∆-complex X, write T for the
maximal CW subcomplex of X supported by T . Quotient maps for
∆-complexes are CW quotient maps. We say a quotient map X ։ Y
is a contraction if the inverse image of each 0-cell of Y is a contractible
subcomplex of X. If X is a S∆-complex then a set surjection f : S ։ T
induces a CW contraction on X if f−1(t) is contractible for each t ∈ T .
In this case, we define (X/f) to be the quotient of X by the sub CW-

complexes f−1(t). The cocomposition map of cdc takes (T
f
←− S) to

the map which sends the S∆-complex X to (X/f) ⊗
(⊗

t∈T f−1(t)
)
if

f induces a CW contraction on X and 0 otherwise.
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