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Nikolai Vasilevski’s creative attitude — not only to mathematics, but
to life in general — had already received a great stimulus in Odessa High
School 116. This highly selective high school accepted talented children
from all over the city, being famous for its selection of quality teachers. A
creative, nonstandard, yet highly personal approach to teaching combined
with a demanding attitude towards students. The school was also famous
for its system of self-government by the students, quite unusual by tradi-
tional Soviet standards. Many students that graduated from this school
later became well-known scientists and productive researchers.

Upon graduation in 1966, Nikolai became a student at the Department
of Mathematics and Mechanics of Odessa State University. In his third year
of studies he began his serious mathematical work under the supervision
of the well known Soviet mathematician Georgiy Semenovich Litvinchuk.
Litvinchuk was a gifted teacher and scientific adviser, with a talent for
fascinating his students with problems long interesting and yet up-to-date.
The weekly Odessa seminar on boundary value problems, chaired by Prof.
Litvinchuk for more than 25 years, deeply influenced Nikolai Vasilevski as
well as other students.

Thus Nikolai started to work on the problem of developing Fredholm
theory for a class of integral operators with nonintegrable integral kernels.
In essence, the integral kernel was the Cauchy kernel multiplied by a loga-
rithmic factor. Integral operators of this type lie in between singular inte-
gral operators and those whose kernels have weak (integrable) singularities.
A famous Soviet mathematician, F. D. Gakhov, posed this problem in the
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early 1950s, and it remained open for more than 20 years. Nikolai man-
aged to provide a complete solution in a much more general setting than
the original. While working on this problem, Nikolai revealed a key trait
of his mathematical talent: his ability to penetrate deeply into the core of
the problem, and to see rather unexpected connections between different
theories. For instance, in order to solve Gakhov’s problem, Nikolai utilized
the theory of singular integral operators with coefficients having disconti-
nuities of first kind, and the theory of operators whose integral kernels have
fixed singularities — both theories having just appeared at that time. The
success of the young mathematician was well recognized by a broad circle
of experts working in the area of boundary value problems and operator
theory. Nikolai was awarded the prestigious M. Ostrovskii Prize in 1971,
given to young Ukrainian scientists with the best research work. Due to
his solution of the famous problem, Nikolai quickly entered the mathemat-
ical community, and became known to many prominent mathematicians
of that time. In particular, he was influenced by regular interaction with
outstanding mathematicians such as M. G. Krein and S. G. Mikhlin.

Nikolai graduated from Odessa State University in 1971, obtaining his
Master degree. After two years he defended his Ph.D. thesis, and in the
same year he became an Assistant Professor at the Department of Mathe-
matics and Mechanics of Odessa State University, where he was later pro-
moted first to the rank of Associate Professor and then to Full Professor.

Having received the degree, Nikolai continued his active mathematical
work. He quickly displayed yet another facet of his talent in approach-
ing mathematical problems: his vision and ability to use general algebraic
structures in operator theory, which, on the one hand, simplify the prob-
lem, and on the other, can be applied to many different problems. We will
briefly describe two examples of this.

The first example is the method of orthogonal projections. In 1979,
studying the algebra of operators generated by the Bergman projection
together with the operators of multiplication by piecewise continuous func-
tions, N. Vasilevski gave a description of the C∗-algebra generated by two
self-adjoint elements s and n satisfying the properties s2 + n2 = e and
sn+ns = 0. A simple substitution p = (e + s−n)/2 and q = (e− s−n)/2
shows that this algebra is also generated by two self-adjoint idempotents
(orthogonal projections) p and q (and the identity element e). During the
last quarter of the past century, the latter algebra was rediscovered by many
authors around the world. Among all algebras generated by orthogonal pro-
jections, the algebra generated by two projections is the only tame algebra
(excluding the trivial case of the algebra with identity generated by one
orthogonal projection). All algebras generated by three or more orthogonal
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projections are known to be wild, even when the projections satisfy some
additional constraints. Many model algebras arising in operator theory
are generated by orthogonal projections, and thus any information about
their structure essentially broadens the set of operator algebras admitting a
reasonable description. In particular, two and more orthogonal projections
naturally appear in the study of various algebras generated by the Bergman
projection and by piecewise continuous functions having two or more dis-
tinct limiting values at a point. Although these projections, say, P , Q1,
. . . , Qn, satisfy the extra condition Q1 + · · · + Qn = I, they still generate,
in general, a wild C∗-algebra. However, it was shown that the structure of
this algebra is determined by the joint properties of certain positive injec-
tive contractions Ck, k = 1, . . . , n, satisfying the identity

∑n
k=1 Ck = I; the

structure is therefore determined by the structure of the C∗-algebra gener-
ated by the contractions. The principal difference between the case of two
projections and the general case of a finite set of projections is now com-
pletely clear: for n = 2 (with projections P and Q + (I −Q) = I) we have
only one contraction, and the spectral theorem leads directly to the desired
description of the algebra. For n > 2 we have to deal with the C∗-algebra
generated by a finite set of noncommuting positive injective contractions,
which is a wild problem. Fortunately, for many important cases related
to concrete operator algebras these projections have yet another special
property: the operators PQ1P, . . . , PQnP commute. This property makes
the respective algebra tame, so it has a nice and simple description as the
algebra of all n×n matrix valued functions that are continuous on the joint
spectrum ∆ of the operators PQ1P, . . . , PQnP , with a certain degeneration
on the boundary of ∆.

Another notable example of the algebraic structures used and devel-
oped by N. Vasilevski is his version of the Local Principle. The notions
of locally equivalent operators and localization theory were introduced and
developed by I. Simonenko in the mid-sixties. According to the tradition
of that time, the theory was focused on the study of individual operators,
and on the reduction of the Fredholm properties of an operator to local
invertibility. Later, different versions of the local principle were elaborated
by many authors, including G. R. Allan, R. Douglas, I. Ts. Gohberg, N. Ia.
Krupnik, A. Kozak, and B. Silbermann. In spite of the fact that many of
these versions are formulated in terms of Banach- or C∗-algebras, the main
result, as before, reduces invertibility (or the Fredholm property) to local
invertibility. On the other hand, at about the same time, several papers on
the description of algebras and rings in terms of continuous sections were
published by J. Dauns and K. H. Hofmann, M. J. Dupré, J. M. G. Fell,
M. Takesaki and J. Tomiyama. These two directions have been developed
independently, with no known links between the two series of papers. N.
Vasilevski was the one who proposed a local principle which gives the global
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description of the algebra under study in terms of continuous sections of a
certain canonically defined C∗-bundle. This approach is based on general
constructions of J. Dauns and K. H. Hofmann, and results of J. Varela.
The main contribution consists of a deep re-comprehension of the tradi-
tional approach to the local principles unifying the ideas coming from both
directions, resulting in a canonical procedure that provides the global de-
scription of the algebra under consideration in terms of continuous sections
of a C∗-bundle constructed by means of local algebras.

In the eighties and even later, the main direction of the work of Nikolai
Vasilevski has been the study of multidimensional singular integral opera-
tors with discontinuous coefficients. The main philosophy here is first to
study algebras containing these operators, thus providing a solid foundation
for the study of various properties (in particular, the Fredholm property)
of concrete operators. The main tool has been the version of the local prin-
ciple described above. This principle was not merely used to reduce the
Fredholm property to local invertibility but also for a global description of
the algebra as a whole based on the description of the local algebras. Using
this methodology, Nikolai Vasilevski obtained deep results in the theory
of operators with Bergman’s kernel and piece-wise continuous coefficients,
the theory of multidimensional Toeplitz operators with pseudodifferential
presymbols, the theory of multidimensional Bitsadze operators, the theory
of multidimension al operators with shift, etc. N. Vasilevski defended the
Doctor of Sciences dissertation in 1988, based on these results, entitled
“Multidimensional singular integral operators with discontinuous classical
symbols”.

Besides being a very active mathematician, N. Vasilevski is an excellent
lecturer. His talks are always clear, sparkling, and full of humor, so natural
for someone who grew up in Odessa, a city with a longstanding tradition
of humor and fun. He was the first at Odessa State University to design
and teach a course in general topology. Students enjoyed his lectures in
calculus, real analysis, complex analysis, and functional analysis. He was
one of the most popular professors at the Department of Mathematics and
Mechanics of Odessa State University. Nikolai is a master of presentations,
and his colleagues always enjoy his talks at conferences and seminars.

In 1992 Nikolai Vasilevski moved to Mexico. He started his career there
as an Investigator (Full Professor) at the Mathematics Department of the
Cinvestav (Centro de Investigación y de Estudios Avanzados). His ap-
pointment significantly strengthened the Department, which is one of the
leading mathematical centers in Mexico. His relocation also visibly revital-
ized mathematical activity in the country in the field of operator theory.
While actively pursuing his own research agenda, Nikolai also served as the
organizer of several important conferences. For instance, we mention the
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(regular since 1998) annual workshop “Análisis: Norte-Sur,” and the well-
known international conference IWOTA-2009. He facilitated the relocation
to Mexico of a number of other experts in operator theory, including Yu.
Karlovich and S. Grudsky.

During his career in Mexico, Vasilevski produced a sizable group of
students and younger colleagues; six young mathematicians have received
a Ph.D. degree under his supervision.

During his life in Mexico, Vasilevski’s scientific interests concentrated
mainly around the theory of Toeplitz operators on Bergman and Fock
spaces. At the end of the 1990s, N. Vasilevski discovered a quite sur-
prising phenomenon in the theory of Toeplitz operators on the Bergman
space. Unexpectedly, there exists a rich family of commutative C∗-algebras
generated by Toeplitz operators with non-trivial defining symbols. In 1995
B. Korenblum and K. Zhu proved that the Toeplitz operators with radial
defining symbols acting on the Bergman space over the unit disk can be
diagonalized with respect to the standard monomial basis in the Bergman
space. The C∗-algebra generated by such Toeplitz operators is therefore
obviously commutative. Four years later Vasilevski also proved the com-
mutativity of the C∗-algebra generated by the Toeplitz operators acting
on the Bergman space over the upper half-plane and with defining sym-
bols depending only on Im z. Furthermore, he discovered the existence of a
rich family of commutative C∗-algebras of Toeplitz operators. Moreover, it
turned out that the smoothness properties of the symbols do not play any
role in commutativity: the symbols can be merely measurable. Surpris-
ingly, everything is governed by the geometry of the underlying manifold,
the unit disk equipped with the hyperbolic metric. The precise descrip-
tion of this phenomenon is as follows. Each pencil of hyperbolic geodesics
determines the set of symbols which are constant on the corresponding
cycles, the orthogonal trajectories to geodesics forming the pencil. The
C∗-algebra generated by the Toeplitz operators with such defining symbols
is commutative. An important feature of such algebras is that they remain
commutative for the Toeplitz operators acting on each of the commonly
considered weighted Bergman spaces. Moreover, assuming some natural
conditions on “richness” of the classes of symbols, the following complete
characterization has been obtained: A C∗-algebra generated by the Toeplitz
operators is commutative on each weighted Bergman space if and only if
the corresponding defining symbols are constant on cycles of some pencil
of hyperbolic geodesics. It is also worth mentioning that the proof of this
result uses the Berezin quantization procedure in an essential way. Apart
from its own beauty, this result reveals an extremely deep influence of the
geometry of the underlying manifold on the properties of the Toeplitz op-
erators over the manifold. In each of the mentioned above cases, when the
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algebra is commutative, a certain unitary operator has been constructed.
It reduces the corresponding Toeplitz operators to certain multiplication
operators, which also allows one to describe their representations of spec-
tral type. This gives a powerful research tool for the subject, in particular,
yielding direct access to the majority of the important properties such as
boundedness, compactness, spectral properties, and invariant subspaces of
the Toeplitz operators under study. This new approach has enabled the
solution of a number of important problems in the theory of Toeplitz oper-
ators and related areas.

The results of the research in this direction became a part of the mono-
graph “Commutative Algebras of Toeplitz Operators on the Bergman Spa-
ce” published by N. Vasilevski in Birkhauser-Verlag in 2008.

The extension of the above result from the unit disk to the unit ball was
recently done by Nikolai together with his Mexican colleague Raul Quiroga.
Geometry again played an essential role in this study. The commutativ-
ity properties of Toeplitz operators here are governed by the so-called La-
grangian pairs, pairs of orthogonal Lagrangian foliations of the unit ball
with certain distinguished geometrical properties. The leaves of one of
these foliations always turn out to be the orbits of a maximal abelian sub-
group of biholomorphisms of the unit ball. The result says that, given any
Lagrangian pair, the C∗-algebra generated by Toeplitz operators, whose
generating symbols are constant on the leaves being orbits, is commutative
on each commonly considered weighted Bergman space on the unit ball.

The program of studying commutative algebras generated by Toeplitz
operators as well as the development of various related problems, initiated
by N. Vasilevski, is now being carried out by growing groups of mathemati-
cians in different research centers.

During his twenty years at the Cinvestav, Nikolai Vasilevski has consis-
tently applied the best traditions of the Russian mathematical school in his
training of young talented Mexican researchers. The constantly growing
group of his coauthors, colleagues, and students is an established part of
the “Mexican school of Toeplitz operators”—an expression heard more and
more at international conferences.
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